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Abstract
Affine su(3) and su(4) fusion multiplicities are characterized as discretized
volumes of certain convex polytopes. The volumes are measured explicitly,
resulting in multiple sum formulae. These are the first polytope-volume
formulae for higher-rank fusion multiplicities. The associated threshold levels
are also discussed. For any simple Lie algebra, we derive an upper bound on
the threshold levels using a refined version of the Gepner–Witten depth rule.

PACS numbers: 02.20.Sv, 02.10.Hh, 21.60.Fw

1. Introduction

We are interested in describing fusions of integrable highest weight modules of affine Lie
algebras. Let Mλ denote an integrable highest weight module of an untwisted affine Lie
algebra. The affine weight is uniquely specified by the highest weight λ of the simple
horizontal subalgebra (the underlying Lie algebra), and the affine level k. Fusion of two such
modules may be written as

Mλ × Mµ =
∑

ν

N
(k)ν
λ,µ Mν (1)

where N
(k)ν
λ,µ is the fusion multiplicity. This is equivalent to studying the more symmetric

problem of determining the multiplicity of the singlet in the expansion of the triple fusion

Mλ × Mµ × Mν ⊃ N
(k)
λ,µ,νM0. (2)

If ν+ denotes the weight conjugate to ν, we have N
(k)
λ,µ,ν = N

(k)ν+

λ,µ .
The associated and level-independent tensor product multiplicity is denoted by Tλ,µ,ν:

Mλ ⊗ Mµ ⊗ Mν ⊃ Tλ,µ,νM0. (3)

It is related to the fusion multiplicity as

Tλ,µ,ν = lim
k→∞

N
(k)
λ,µ,ν . (4)
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It has been conjectured [1] that the fusion multiplicities are uniquely determined from the tensor
product multiplicities and the associated multi-set of minimum levels {t} at which the various
couplings first appear. Therefore, to the triplet (λ, µ, ν) there corresponds Tλ,µ,ν distinct
couplings, hence Tλ,µ,ν values of t, one for each distinct coupling. These values are called
threshold levels. The threshold levels associated with two different couplings may be identical.
This justifies the use of the notion of a multi-set of threshold levels to describe the general
case. The number of different couplings with the same threshold level t is called the threshold
multiplicity, n(t)

λ,µ,ν , and may be expressed in terms of the fusion multiplicities:

n
(t)
λ,µ,ν = N

(t)
λ,µ,ν − N

(t−1)
λ,µ,ν . (5)

In [2] Berenstein and Zelevinsky showed that an su(r + 1) tensor product multiplicity
is equal to the number of possible triangular arrangements of non-negative integers subject
to certain constraints, referred to as BZ triangles. A triangle without the constraint that all
the integer entries should be non-negative, is called a generalized BZ triangle [3]. The set of
generalized triangles associated with a particular product (3) spans an 1

2 r(r − 1)-dimensional
lattice. Any triangle T in the lattice may be expressed in terms of an initial one T0 plus an
integer linear combination of the so-called (basis) virtual triangles Vl:

T = T0 +
r(r−1)/2∑

l=1

vlVl . (6)

Re-imposing the constraint that all entries must be non-negative, results in a set of inequalities
in the coefficients vl defining a convex polytope. Its discretized volume (i.e. the number of
integer points enclosed by it) is the tensor product multiplicity [3].

This idea was generalized to higher-point couplings in [4], and to affine su(2) fusions
in [5] (that work also describes the extension to higher-point fusions and higher genus). The
objective of the present work is the extension to affine su(3) and su(4) fusions. Thus, the
affine su(3) and su(4) fusion multiplicities are characterized as discretized volumes of certain
polytopes. The volumes are subsequently measured explicitly, resulting in multiple sum
formulae for the fusion multiplicities.

We also discuss the associated threshold levels, and for su(3) and su(4) work out explicitly
the minimum threshold level tmin, and the maximum threshold level tmax. In the case of su(4)

these are new results. By construction, tmax is the minimum level for which the (non-vanishing)
tensor product multiplicity and the fusion multiplicity coincide. It is therefore of particular
interest to know tmax. Using a refined depth rule applicable to all simple Lie algebras, we find
an upper bound on tmax. Motivated by our results for su(4) (and the known results for su(2)

and su(3)), we conjecture that the upper bound on tmax is saturated.

2. su(3) fusion multiplicities

An su(3) BZ triangle, describing a particular coupling (to the singlet M0) associated with the
triple tensor product Mλ ⊗Mµ ⊗Mν , is a triangular arrangement of nine non-negative integers:

m13

n12 l23

m23 m12

n13 l12 n23 l13

(7)

These integers are related to the Dynkin labels of the three integrable highest weights by

m13 + n12 = λ1 n13 + l12 = µ1 l13 + m12 = ν1

m23 + n13 = λ2 n23 + l13 = µ2 l23 + m13 = ν2.
(8)
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We call these relations outer constraints. The entries further satisfy the so-called hexagon
identities

n12 + m23 = n23 + m12

m12 + l23 = m23 + l12

l12 + n23 = l23 + n12

(9)

of which only two are independent.
In the case of su(3) there is one basis virtual triangle

V =
1

1̄ 1̄
1̄ 1̄

1 1̄ 1̄ 1

(10)

where 1̄ ≡ −1. It is easy to work out an initial triangle (a choice of initial triangle valid for
all su(r + 1), may be found in [3]):

T0 =
N ′

2

n2 N2

λ2 N ′
1

0 µ1 n1 N1

(11)

where

n1 = λ2 + µ2 − ν1 n2 = λ1 + µ1 − ν2

(12)
N1 = −n1 + µ2 N2 = n1 − n2 + µ1 N ′

i = νi − Ni i = 1, 2.

The dual Dynkin labels of the su(3) weight λ are

λ1 = 1
3 (2λ1 + λ2) λ2 = 1

3 (λ1 + 2λ2). (13)

In general, ordinary and dual Dynkin labels are defined by

λ =
r∑

i=1

λi�
i =

r∑
i=1

λiα∨
i (14)

where {�i} and {α∨
i } are the sets of fundamental weights and simple co-roots, respectively.

r is the rank of the Lie algebra. It is r = N − 1 for su(N). The set of simple roots is denoted
by {αi}.

Any generalized triangle may now be expressed as

T = T0 + vV . (15)

Re-imposing that all entries of T must be non-negative integers, defines a convex polytope (in
this case a line segment) characterized by the inequalities

0 � N ′
2 + v, n2 − v, λ2 − v, v, µ1 − v, n1 − v,N1 + v,N ′

1 − v,N2 − v. (16)

Its discretized volume is the tensor product multiplicity Tλ,µ,ν . Note the implicit consistency
conditions

Si ≡ λi + µi + νi ∈ Z� i = 1, 2 (17)

which must be respected to have a non-vanishing multiplicity.
It was shown in [6] that one can assign the threshold value

t = max{λ1 + λ2 + l13, µ1 + µ2 + m13, ν1 + ν2 + n13} (18)
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to any given su(3) BZ triangle (7). This means that the fusion multiplicity may be described
by supplementing the tensor product conditions (16) by the affine condition

k � t . (19)

Thus, the discretized volume of the convex polytope defined by the inequalities

0 � N ′
2 + v, n2 − v, λ2 − v, v, µ1 − v, n1 − v,N1 + v,N ′

1 − v,N2 − v,

k − λ1 − λ2 − N1 − v, k − µ1 − µ2 − N ′
2 − v, k − ν1 − ν2 − v (20)

is the fusion multiplicity N
(k)
λ,µ,ν . The volume is easily measured explicitly, and we are left

with the sum

N
(k)
λ,µ,ν =

vU∑
v=vL

1

vL = max{0,−λ1 + λ2 + µ1 − ν2, λ2 + µ1 − µ2 − ν1} (21)

vU = min{λ2, µ1, λ
2 + µ2 − ν1, λ1 + µ1 − ν2, λ2 + µ1 − µ2 + ν1 − ν2,

−λ1 + λ2 + µ1 − ν1 + ν2, k − λ1 + µ1 − µ2 − ν1,

k − λ1 + λ2 − µ2 − ν2, k − ν1 − ν2}.
For ease of use, it is expressed entirely in terms of the level k and the dual and ordinary Dynkin
labels. This expression is of course not unique due to the choice of initial triangle (11) and
the many possible ways of rewriting it. We recall the consistency conditions (17).

2.1. Threshold levels

As an application of (21), we may address the question when the fusion multiplicity is greater
than any given (non-negative) integer M. The answer is easily obtained since it corresponds to
requiring that vU − vL � M , and we find the 27 conditions

M � λi, µi, νi i = 1, 2

M � Si − (λ1 + λ2), Si − (µ1 + µ2), Si − (ν1 + ν2), Si − (λi + µi),

Si − (µi + νi), Si − (νi + λi) i = 1, 2 (22)

M � k − (λ1 + λ2), k − (µ1 + µ2), k − (ν1 + ν2)

M � k − Si + λi, k − Si + µi, k − Si + νi i = 1, 2.

This is particularly interesting when M = 0. It also allows us to re-express the fusion
multiplicity itself. From (22) it follows immediately that necessary conditions for N

(k)
λ,µ,ν > 0

are k � λ1 + λ2, µ1 + µ2, ν1 + ν2, Si − min{λi, µi, νi}, i = 1, 2, while the fusion multiplicity
is equal to the tensor product multiplicity (i.e. N

(k)
λ,µ,ν is independent of the level k) when

k � min{S1, S2}. Furthermore, according to (18) and the structure of the virtual triangle (10),
adding a virtual triangle to a triangle increases the threshold level by one. We conclude that
the fusion multiplicity is

N
(k)
λ,µ,ν =




0 if k < tmin or tmax < tmin

k − tmin + 1 if tmin � k � tmax

Tλ,µ,ν = tmax − tmin + 1 if tmin � tmax < k

tmin = max{λ1 + λ2, µ1 + µ2, ν1 + ν2, S1 − min{λ1, µ1, ν1}, S2 − min{λ2, µ2, ν2}} (23)

tmax = min{S1, S2}
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still provided (17). The set of threshold levels for the Tλ,µ,ν distinct couplings is easily read
off

{tmin, tmin + 1, . . . , tmax}. (24)

This confirms the result of [7] where expression (23) and the threshold level string (24) first
appeared.

3. su(4) fusion multiplicities

For su(4) a BZ triangle is defined in terms of 18 non-negative integers:

m14

n12 l34

m24 m13

n13 l23 n23 l24

m34 m23 m12

n14 l12 n24 l13 n34 l14

(25)

related to the Dynkin labels by

m14 + n12 = λ1 n14 + l12 = µ1 l14 + m12 = ν1

m24 + n13 = λ2 n24 + l13 = µ2 l24 + m13 = ν2

m34 + n14 = λ3 n34 + l14 = µ3 l34 + m14 = ν3.

(26)

The su(4) BZ triangle contains three hexagons with the associated constraints:

n12 + m24 = m13 + n23 n13 + l23 = l12 + n24 l24 + n23 = l13 + n34

n12 + l34 = l23 + n23 n13 + m34 = n24 + m23 n23 + m23 = m12 + n34

m24 + l23 = l34 + m13 m34 + l12 = l23 + m23 l13 + m23 = l24 + m12.

(27)

Only six of these nine hexagon identities are independent.
In the case of su(4) the three basis virtual triangles V1,V2 and V3 are

V1 =

1
1̄ 1̄

1̄ 1̄
1 1̄ 1̄ 1

0 1 0
0 0 0 0 0 0

V2 =

0
0 0

1 0
1̄ 1̄ 1 0

1̄ 1̄ 0
1 1̄ 1̄ 1 0 0

(28)

V3 =

0
0 0

0 1
0 1 1̄ 1̄

0 1̄ 1̄
0 0 1 1̄ 1̄ 1

We make the following choice of initial triangle [3]:

T0 =

N ′
3

n3 N3

λ2 N ′
2

0 µ1 n2 N2

λ3 λ3 N ′
1

0 µ1 0 µ2 n1 N1

(29)
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where

n1 = λ3 + µ3 − ν1 n2 = λ2 + µ2 − ν2 n3 = λ1 + µ1 − ν3

N1 = −n1 + µ3 N2 = n1 − n2 + µ2 N3 = n2 − n3 + µ1

N ′
i = νi − Ni i = 1, 2, 3 .

(30)

The dual Dynkin labels (14) of the su(4) weight λ are

λ1 = 1
4 (3λ1 + 2λ2 + λ3) λ2 = 1

4 (2λ1 + 4λ2 + 2λ3) λ3 = 1
4 (λ1 + 2λ2 + 3λ3). (31)

Now, any generalized triangle may be written as

T = T0 +
3∑

l=1

vlVl (32)

and the tensor product multiplicity Tλ,µ,ν is the discretized volume of the (in general) three-
dimensional convex polytope

0 � v2, µ1 − v2, λ3 − v2,−v2 + v3, v1 − v2, µ2 + v2 − v3, λ2 − v1 + v2, λ3 + v1 − v2 − v3,

µ1 − v1 − v2 + v3, n1 − v3, n2 − v1 + v2 − v3, n3 − v1,

N1 + v3, N
′
1 − v3, N2 + v1 − v3, N

′
2 − v1 + v3, N3 − v1, N

′
3 + v1. (33)

We have the consistency conditions

Si ≡ λi + µi + νi ∈ Z� i = 1, 2, 3. (34)

It was shown in [8] (and confirmed in [9]) that one can assign the threshold level

t = max
{
λ1 + λ2 + λ3 + l14, µ1 + µ2 + µ3 + m14, ν1 + ν2 + ν3 + n14, λ1 + λ2 + l14 + l24 + n14,

λ2 + λ3 + l14 + l13 + m14, µ1 + µ2 + m14 + m24 + l14,

µ2 + µ3 + m14 + m13 + n14, ν1 + ν2 + n14 + n24 + m14,

ν2 + ν3 + n14 + n13 + l14, l14 + m14 + n14

+
[

1
2 (λ2 + µ2 + ν2 + l23 + m23 + n23 + 1)

]}
(35)

to any given su(4) BZ triangle (25). [x] denotes the integer value of x, i.e. the greatest
integer less than or equal to x. This means that the fusion multiplicity may be described by
supplementing the tensor product conditions (33) by the affine condition (19), with (35) as the
threshold level t.

After a simple rewriting, the condition k � t on the last line of (35) becomes

k �
[

1
2 (λ2 + µ2 + ν2 + l14 + m14 + n14 + 1)

]
. (36)

According to (32), it involves the integer value of a possibly half-integer number depending
on the parameters vl defining the polytope. Thus, the polytope is in general not convex, and
measuring its volume is not straightforward. However, we observe that for integers k and B,
the condition k � [B/2] is equivalent to k � (B − 1)/2. Condition (36) may therefore be
simplified as

v1 + v2 + v3 � 2k − λ1 + λ3 + µ1 − µ3 − ν1 − ν2 − ν3. (37)

In conclusion, the discretized volume of the convex polytope defined by v1, v2 and v3 subject
to the inequalities

0 � v2, µ1 − v2, λ3 − v2,−v2 + v3, v1 − v2, µ2 + v2 − v3, λ2 − v1 + v2, λ3 + v1 − v2 − v3,

µ1 − v1 − v2 + v3, n1 − v3, n2 − v1 + v2 − v3, n3 − v1, N1 + v3, N
′
1 − v3,

N2 + v1 − v3, N
′
2 − v1 + v3, N3 − v1, N

′
3 + v1, k − λ1 − λ2 − λ3 − N1 − v3,
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k − µ1 − µ2 − µ3 − N ′
3 − v1, k − ν1 − ν2 − ν3 − v2,

k − λ1 − λ2 − N1 − N2 − v1 − v2, k − µ2 − µ3 − N ′
2 − N ′

3 − v2 − v3,

k + λ3 − ν1 − ν2 − ν3 − v2 − v3, k + µ1 − ν1 − ν2 − ν3 − v1 − v2,

k − ν1 − ν2 − N ′
3 − v1 − v3, k − ν2 − ν3 − N1 − v1 − v3,

2k − λ1 + λ3 + µ1 − µ3 − ν1 − ν2 − ν3 − v1 − v2 − v3 (38)

is the fusion multiplicity N
(k)
λ,µ,ν . The volume is easily measured explicitly, and we are left

with the multiple sum

N
(k)
λ,µ,ν =

vU
2∑

v2=vL
2

vU
1∑

v1=vL
1

vU
3∑

v3=vL
3

1

vL
3 = max{v2,−µ1 + v1 + v2, λ

3 + µ2 − µ3 − ν1,−λ2 + λ3 − µ1 + µ2 − ν2 + ν3 + v1}
vU

3 = min{µ2 + v2, λ3 + v1 − v2, λ
3 + µ3 − ν1, λ2 + µ2 − ν2 − v1 + v2,

λ3 + µ2 − µ3 + ν1 − ν2,−λ2 + λ3 − µ1 + µ2 − ν1 + ν2 + v1,

k − λ1 + λ3 + µ1 − µ3 − ν2 − v2, k + λ3 − ν1 − ν2 − ν3 − v2,

k − λ1 + λ2 + µ1 − ν1 − ν2 − v1, k + λ3 + µ2 − µ3 − ν2 − ν3 − v1, (39)

k − λ1 + µ2 − µ3 − ν1, 2k − λ1 + λ3 + µ1 − µ3 − ν1 − ν2 − ν3 − v1 − v2}
vL

1 = max{v2,−λ1 + λ2 + µ1 − ν3}
vU

1 = min{λ2 + v2, λ
1 + µ1 − ν3,−λ1 + λ2 + µ1 − ν2 + ν3, k − λ1 + λ2 − µ3 − ν3,

k − λ1 + λ3 + µ1 − µ3 − ν2 − v2, k + µ1 − ν1 − ν2 − ν3 − v2}
vL

2 = 0

vU
2 = min{µ1, λ3, k − ν1 − ν2 − ν3}.

For ease of use, it is expressed entirely in terms of the level k and the dual and ordinary Dynkin
labels. This is the most explicit result for affine su(4) fusion multiplicities that we know
of. The choice of order of summation in (39) is immaterial, and we recall the consistency
conditions (34) which are required for a non-vanishing fusion multiplicity. They also ensure
that all bounds are integer.

3.1. Threshold levels

An obvious property of the convex polytope characterizing the su(4) fusion multiplicity is that
it is connected. Furthermore, we have seen that the fusion polytope (38) corresponds to ‘slicing
out’ a convex polytope embedded in the tensor product polytope (33). The slicing procedure
involved then shows us that the support of the threshold multiplicities is also connected, i.e.
for non-vanishing tensor product multiplicity we have

for Tλ,µ,ν > 0 : n
(t)
λ,µ,ν > 0 ⇐⇒ tmin � t � tmax. (40)

Even though this is a very natural result, we believe that our convex polytope description has
provided the most convincing evidence hitherto. It is still not a rigorous proof since a rigorous
proof of (35) has yet to be found.

The argument leading to (40) relies solely on the connectedness of the tensor product
polytope, and the assignment of a threshold level to a true BZ triangle as in (35): t is the
maximum of a set of expressions in the entries. In [3] we have shown that the tensor product
multiplicities for all su(r + 1) may be characterized by convex polytopes, i.e. in particular
connected polytopes. Since we believe that it is possible for all su(r + 1) to assign a threshold
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level to any true BZ triangle as a maximum of a set of expressions in the entries, we conjecture
that (40) is valid for all su(r + 1).

The slicing procedure invites us to make a further conjecture concerning the threshold
multiplicities for a non-vanishing tensor product multiplicity:

for Tλ,µ,ν > 0 ∃t0 ∈ Z�:




n
(t−1)
λ,µ,ν � n

(t)
λ,µ,ν t � t0

n
(t)
λ,µ,ν � n

(t+1)
λ,µ,ν t > t0

(41)

where n
(t<0)
λ,µ,ν ≡ 0. This conjecture indicates that the threshold multiplicity n

(t)
λ,µ,ν as a

function of t has exactly one local maximum. It is a refinement of (40) since it implies
(40). It is made plausible by the observation that the slicing procedure cuts off pieces of the
polytope ‘from above’: all the affine conditions in (38) correspond to planes with oriented
normal vectors (−1, 0, 0), (0,−1, 0), (0, 0,−1), (−1,−1, 0), (−1, 0,−1), (0,−1,−1) or
(−1,−1,−1). Since the polytope is convex, the slicing procedure for decreasing k will
in general cut off bigger and bigger pieces until a certain point, after which the pieces will
become smaller and smaller. A maximum-sized piece is cut off when k decreases from t0 to
t0 − 1. Note that t0 may be any integer in the interval [tmin, tmax]. In general there will be a
(non-vanishing and connected) sub-interval

[
tmin
0 , tmax

0

]
, where any integer in it may play the

role of t0. In most of the cases we have analysed explicitly, tmin
0 = tmax

0 , though that is not
always true. Examples are provided below.

We conjecture that (41) is valid for all su(r + 1). So far, this conjecture has passed all the
non-trivial tests we have made, though proof is still lacking.

The minimum threshold level tmin may be computed by determining necessary and
sufficient conditions for the fusion multiplicity N

(k)
λ,µ,ν to be non-vanishing. Determining

those, involves a straightforward, though cumbersome, analysis of the convex polytope (38)
or equivalently of the multiple sum formula (39)—see also [3]. The resulting conditions may
be expressed as a set of inequalities in the (ordinary and dual) Dynkin labels and the level k.
We choose to present the result in terms of the Weyl group, since we believe that a similar and
universal characterization exists, valid for all simple Lie algebras.

The Weyl group W is generated by three simple reflections:

siλ = λ − λiαi, i = 1, 2, 3. (42)

This extends readily to all simple Lie algebras.
Now, we find that N

(k)
λ,µ,ν is non-vanishing provided

0 � λi, µi, νi i = 1, 2, 3

0 � �1 · (uλ + vµ + wν) u, v,w ∈ {I, s1, s1s2, s1s2s3} l(u) + l(v) + l(w) = 3

0 � �2 · (uλ + vµ + wν) u, v,w ∈ {I, s2, s2s1, s2s1s3, s2s1s3s2}
l(u) + l(v) + l(w) = 4 (43)

0 � �2 · (uλ + vµ + wν) u, v,w ∈ {I, s2, s2s3, s2s3s1, s2s3s1s2}
l(u) + l(v) + l(w) = 4

0 � �3 · (uλ + vµ + wν) u, v,w ∈ {I, s3, s3s2, s3s2s1} l(u) + l(v) + l(w) = 3

and

0 � λ0, µ0, ν0

2k � S2

k � �1 · (uλ + vµ + wν) u, v,w ∈ {I, s1, s1s2} l(u) + l(v) + l(w) = 2 (44)
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k � �2 · (uλ + vµ + wν) (u, v,w) ∈ {p(I, s2, s2s1s3), p(I, s2s1, s2s3), p(s2, s2, s2s1),

p(s2, s2, s2s3) | p ∈ S3}
k � �3 · (uλ + vµ + wν) u, v,w ∈ {I, s3, s3s2} l(u) + l(v) + l(w) = 2.

I is the identity (i.e. Iλ = λ), S3 is the permutation group of three elements, while l(u) denotes
the length of the Weyl group element u (with l(I ) = 0). Note that the two �2-conditions in (43)
contain identical conditions on the weights. They are included to keep the expression compact
and symmetric. (43) contains altogether 50 independent constraints (in [3] they are expressed
as bounds on the weight ν), while (44) contains 34 independent constraints.

To be clear, we stress that it is the Weyl orbits of the fundamental weights which are
important here. The Weyl group elements used above, and their particular expressions as
products of simple reflections sj (words), are not unique.

At least some of the inequalities (43) and (44) are quite easily understood. For example,
N

(k)
λ,µ,ν �= 0 implies that ν+ − λ ∈ P(µ), the set of weights (of non-vanishing multiplicity) of

the module Mµ. The boundaries of the weight diagram of Mµ are easily described:

µ̃ ∈ P(µ) ⇒ µ · �j − µ̃ · (w�j ) � 0 j = 1, . . . , r w ∈ W. (45)

Using ν+ = −w0ν, we find

0 � �j · (wλ + µ + ww0ν) (46)

for any w ∈ W . Other necessary inequalities can be written by permuting λ,µ, ν in (46).
These are far from sufficient as conditions for non-vanishing tensor product multiplicities,

however. In addition, they do not include any level-dependent constraints for fusion,
such as (44). But fusion multiplicities may be found from certain formulae for tensor product
multiplicities by replacing the Weyl group W by the projection of the affine Weyl group. We
suspect that the k-dependent inequalities may be explained this way.

There is a long history of the problem of finding conditions on highest weights such that the
corresponding tensor product multiplicity is non-zero. For a review, see [10]. Recent advances
include work on the tensor products for GLn(C). Necessary and sufficient ‘non-vanishing
conditions’ turn out to have a relatively simple description in terms of Schubert calculus.
The corresponding fusion problem has a similar solution, involving quantum Schubert
calculus [11]. The connection between fusion and quantum cohomology goes back to Witten
[12].

As a simple application of (44), tmin is found to be

tmin = max
{
λ1 + λ3, µ1 + µ3, ν1 + ν3,

[
1
2 (λ2 + µ2 + ν2 + 1)

]
, λ1 + µ1 + ν3 − ν3,

λ1 + µ3 − µ3 + ν1, λ3 − λ3 + µ1 + ν1, λ3 + µ3 + ν1 − ν1,

λ3 + µ1 − µ1 + ν3, λ1 − λ1 + µ3 + ν3, λ1 − µ1 + µ1 − ν1 + ν1,

−λ1 + λ1 + µ1 − ν1 + ν1,−λ1 + λ1 − µ1 + µ1 + ν1, λ3 + µ3 − µ3 + ν3 − ν3,

λ3 − λ3 + µ3 + ν3 − ν3, λ
3 − λ3 + µ3 − µ3 + ν3, λ2 − µ1 + µ3 + ν1 − ν3,

−λ1 + λ3 + µ2 + ν1 − ν3,−λ1 + λ3 + µ1 − µ3 + ν2, λ2 + µ1 − µ3 − ν1 + ν3,

λ1 − λ3 + µ2 − ν1 + ν3, λ1 − λ3 − µ1 + µ3 + ν2, λ2 − λ2 − µ2 + µ2 + ν2,

−λ2 + λ2 + µ2 − µ2 + ν2, λ2 − λ2 + µ2 − ν2 + ν2,−λ2 + λ2 + µ2 + ν2 − ν2,

λ2 + µ2 − µ2 − ν2 + ν2, λ
2 − µ2 + µ2 + ν2 − ν2,

λ2 − λ2 + µ2 − µ2 − ν1 + ν3, λ2 − λ2 + µ2 − µ2 + ν1 − ν3,

λ2 − λ2 − µ1 + µ3 + ν2 − ν2, λ
2 − λ2 + µ1 − µ3 + ν2 − ν2,

−λ1 + λ3 + µ2 − µ2 + ν2 − ν2, λ1 − λ3 + µ2 − µ2 + ν2 − ν2
}
. (47)
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We find that the maximum threshold level tmax is

tmax = min{S1, S2 − max{λ2, µ2, ν2}, S3}. (48)

This formula first appeared in [13], though without proof. According to the general discussion
on upper bounds on tmax given below, (48) states that the relevant bound (62) for su(4) is
saturated. To prove that explicitly, we show that for non-vanishing tensor product multiplicity
Tλ,µ,ν , there is at least one integer point in the associated convex polytope that corresponds to
a (true) BZ triangle of threshold level t (35) equal to the conjectured value (48).

Following the discussion above we should consider a point on the surface of the polytope.
The surface is characterized by one or several of the BZ entries (25) being zero. When at least
two entries vanish simultaneously, we are at an intersection of faces. Since the vanishing of a
corner point (m14 = 0, n14 = 0 or l14 = 0) corresponds to a minimum value of v1, v2 or v3,
symmetry then allows us to consider three initial conditions only: n12 = 0,m24 = 0 or l23 = 0.
To indicate how the proof goes, let us assume that n12 = 0. We may then add the sum V2 + V3

to the triangle (leaving n12 = 0 unchanged) until one of the entries n13,m34, l12, n34,m12, l24

and m23 also vanishes, or m23 = 1. Depending on the situation one may then add additional
numbers of V2 or V3 to obtain yet another vanishing entry. With many sufficiently vanishing
entries, the threshold level (35) always coincides with (48). A priori, there are many possible
intersections to analyse, but a straightforward and systematic approach makes the analysis
tractable. In this way we have shown that the maximum threshold level is given by the simple
expression (48).

3.2. Examples

The threshold level is in general not linear in the BZ triangles:

t (T1 + T2) � t (T1) + t (T2). (49)

Here T1 and T2 indicate true BZ triangles. Of particular interest is the behaviour under addition
of virtual triangles. As is easily seen, inequality (49) is in general not saturated even in those
cases:

t (T + Vi ) = t (T ) + c c ∈ {0, 1}
t (T + W − Vi ) = t (T ) + c c ∈ {0, 1, 2}
t (T + W) = t (T ) + c c ∈ {1, 2}

(50)

whereas formally we may assign the threshold levels

t (Vi) = 1 t (W − Vi) = t (W) = 2. (51)

Here we have introduced the linear combination

W ≡ V1 + V2 + V3 =

1
1̄ 1̄

0 0
0 1̄ 1̄ 0

1̄ 1̄ 1̄
1 1̄ 0 0 1̄ 1

(52)

Note that for su(3) we have t (T + V) = t (T ) + 1 for all triangles. In the following, we will
discuss two examples where a similar simple situation occurs for su(4).

Our first example is defined by λ2 = µ2 = 0, with the remaining seven non-negative
Dynkin labels restricted a priori only by (34). In this case the convex polytope is one-
dimensional and generated by W (52). It then follows from (40) that t (T + W) = t (T ) + 1,
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and we conclude that we are in a situation similar to the general su(3) case—see (23)
and (24):

N
(k<tmax)
λ,µ,ν =

k∑
j=tmin

1 N
(k�tmax)

λ,µ,ν = Tλ,µ,ν =
tmax∑

j=tmin

1. (53)

The set of associated threshold levels is

{tmin, tmin + 1, . . . , tmax}. (54)

In particular, all non-vanishing threshold multiplicities are 1, and tmin
0 = tmin and tmax

0 = tmax.
Furthermore, it is easily shown that for λ2 = µ2 = 0 the maximum threshold level (48) is

tmax = S2 − ν2. (55)

It follows that the tensor product multiplicity may be expressed as the minimum of a simple
set of linear combinations of Dynkin labels:

Tλ,µ,ν = 1 + min
{
λ1, λ3, µ1, µ3, ν1, ν3, λ1 + λ3 − ν2, µ1 + µ3 − ν2, λ1 + µ3 − ν2,

λ3 + µ1 − ν2, λ
2 + µ2 − ν2,

[
1
2S2

] − ν2, λ
2 − µ2 + ν2 − ν2,

− λ2 + µ2 + ν2 − ν2, λ
1 − µ1 + µ2 + ν1 − ν2,−λ1 + λ2 + µ1 + ν1 − ν2,

λ3 + µ2 − µ3 + ν3 − ν2, λ
2 − λ3 + µ3 + ν3 − ν2,

− λ1 + λ2 − µ1 + µ2 + ν1, λ2 − λ3 + µ2 − µ3 + ν3,

λ1 − µ1 + µ2 − ν2 + ν3,−λ1 + λ2 + µ1 − ν2 + ν3,

λ3 + µ2 − µ3 + ν1 − ν2, λ2 − λ3 + µ3 + ν1 − ν2
}

(56)

using (47). It is understood that Tλ,µ,ν vanishes if expression (56) is negative.
Our second example is defined by λ3 = µ3 = 0, with the remaining seven non-negative

Dynkin labels restricted a priori only by (34). The convex polytope is one-dimensional and
generated by V1 of (28). In the general expression (47) for tmin, one of the contributors is
λ3 − λ3 + µ3 − µ3 + ν3 which in this case reduces to S3. We may therefore conclude that

tmin = tmax = S3. (57)

It then follows that t (T + V1) = t (T ), and there is only one non-vanishing threshold
multiplicity: n

(S3)
λ,µ,ν = Tλ,µ,ν and tmin

0 = tmax
0 = S3. A straightforward analysis of the

single sum expressing the tensor product multiplicity yields

Tλ,µ,ν = 1 + min{λ1, µ1, ν1, ν2, ν3,−λ1 + λ2 − µ3 + ν1,−λ3 − µ1 + µ2 + ν1,

− λ1 + µ3 + ν3, λ3 − µ1 + ν3, λ1 − µ3 − ν1 + ν2,−λ3 + µ1 − ν1 + ν2,

λ1 − λ3 + µ1 − µ3 + ν1 − ν3, λ1 − λ3 + µ1 − µ3 − ν1 + ν3,

λ1 − λ2 + µ3 + ν2 − ν3, λ3 + µ1 − µ2 + ν2 − ν3,−λ1 + λ3 − µ1 + µ3 + ν2,

λ1 − λ3 − µ1 + µ3 + ν1 − ν2 + ν3,−λ1 + λ3 + µ1 − µ3 + ν1 − ν2 + ν3} (58)

provided λ3 + µ3 − ν1 � 0 and expression (58) is non-negative. If one of these conditions
fails to be satisfied, Tλ,µ,ν vanishes by construction.

Furthermore, we can write a very simple but necessary condition on the tensor product
multiplicity. Assuming that the two conditions λ3 + µ3 − ν1 � 0 and Tλ,µ,ν � 0 are satisfied,
(58) easily yields

Tλ,µ,ν � 1 + min{λ1, λ2, µ1, µ2, ν1, ν2, ν3}. (59)

The two examples above illustrate two extreme situations: a ‘horizontal’ distribution of
threshold levels and a ‘vertical’ distribution. In the first example, we have a threshold level
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string with associated multiplicities all being one—a purely horizontal distribution. In the
second example, we have exactly one non-vanishing threshold multiplicity—a purely vertical
distribution. A generic situation will have a much more complicated distribution, which we
believe must respect (40) and (41).

It is trivial to devise an alternative example of a purely vertical distribution, namely,
λ1 = µ1 = 0. Analogues to the results above in the case λ3 = µ3 = 0, are obtained by
conjugation: (λ1, λ2, λ3)

+ = (λ3, λ2, λ1), etc. Simple permutations of the three weights λ,µ

and ν also provide new examples.

4. Refined depth rule and threshold levels

A refinement of the Gepner–Witten depth rule

N
(k)
λ,µ,ν = dim{v ∈ Mµ,ν+−λ | f

νi +1
i v = 0, i = 1, . . . , r; ek−ν·θ+1

θ v = 0} (60)

was conjectured in [6, 14] (see also [15]). Here Mµ,ν+−λ is the subspace of Mµ of weight
ν+ − λ, fi is the lowering operator associated with the simple root αi , and eθ is the raising
operator associated with θ , the highest root of the simple Lie algebra (of rank r) being
considered. When the level k is large, the constraint ek−ν·θ+1

θ v = 0 is automatically satisfied,
and a well-known formula for the tensor product coefficients is recovered. This agrees with
(4).

In this section u, v and w denote vectors—not Weyl group elements as they did in the
previous section.

We now derive an upper bound on the maximum threshold level associated with
N

(k)
λ,µ,ν �= 0. The depth dv ∈ Z� of v is the minimum possible power of eθ such that

e
dv+1
θ v = 0. (60) tells us that if a vector v ∈ Mµ,ν+−λ associated with a fusion coupling has

depth dv, then its threshold level is t = dv + ν · θ .
An obvious upper bound on dv is the maximum number of times θ can be added to

the weight ν+ − λ of v to obtain a ‘higher weight’ still having non-zero multiplicity in
Mµ. For the upper bound, the higher weight ν+ − λ + dv,maxθ should be a weight on the
boundary of the weight diagram. Because θ is the highest root, the boundary weight will have
�j · (ν+ − λ + dv,maxθ) = �j · µ, for some j ∈ {1, . . . , r}. We write θ = ∑r

j=1 a∨jα∨
j ,

where a∨j and α∨
j denote the j th co-mark and simple co-root, respectively. Then we obtain

dv,max = min{(λj + µj − νj+
)/a∨j | j = 1, . . . , r}, where νj+ ≡ �j · ν+. Finally, this gives

tmax � min{(λj + µj − νj+
)/a∨j + ν · θ | j = 1, . . . , r}. (61)

Note that all co-marks a∨
j are non-vanishing.

This bound can be improved by noticing that (60) treats the weights {λ,µ, ν}
asymmetrically; so permuting those weights will result in other upper bounds on tmax. For
p ∈ S3, let p{λ,µ, ν} ≡ {pλ, pµ,pν}. Then we must have

tmax � min{((pλ)j + (pµ)j − (pν)j
+
)/a∨j + (pν) · θ | j ∈ {1, . . . , r}, p ∈ S3}. (62)

Finally, we conjecture that this bound is saturated for all (untwisted) affine Lie algebras, i.e.
(62) is an equality. As shown in previous sections, that is true for su(3) and su(4), and it is
easily seen to be true for su(2).

Also interesting is a similar argument based on the symmetric form of the depth rule.
Suppose u ∈ Mλ,λ̄, v ∈ Mµ,µ̄, w ∈ Mν,ν̄ , and that the Clebsch–Gordan coefficient Cu,v,w �= 0
for the coupling Mλ ⊗ Mµ ⊗ Mν ⊃ M0 of interest. Then λ̄ + µ̄ + ν̄ = 0, and the symmetric
depth rule says that

(eθ )
au ⊗ (eθ )

bv ⊗ (eθ )
cw = 0 for all a + b + c > k. (63)
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This implies that

tmax � min{(λ + µ + ν)j/a∨j | j = 1, . . . , r}. (64)

The bound (62) is always stronger than the bound (64), which is equivalent to stating that

ν · θ � (νj + νj+
)/a∨j for j = 1, . . . , r. (65)

We have checked (65) explicitly for all simple Lie algebras: Ar,Br , . . . , F4,G2. Alternatively,
one may regard the comparison of the bounds (62) and (64) as an indirect proof of (65), since
from the point of view of the associated depth rules, the one leading to (62) is obviously the
stronger one. We recall that Ar  su(r + 1).

A weaker bound was previously found by Cummins for su(r + 1). As quoted in [7] it
states that tmax � min{S1, Sr }, and was obtained using symmetric function techniques. Here
S1 and Sr are defined as in (17) and (34).

5. Comments

We anticipate that fusion multiplicities for higher rank su(r + 1) may also be characterized
by discretized polytope volumes. Whether or not such a volume may be measured
straightforwardly is less clear. One could imagine that complications such as the integer-
value considerations above would appear, and that they increase in complexity for higher
rank.

We also believe that our approach may be extended to cover other simple Lie algebras,
and intend to discuss that elsewhere. Since a generalization of the BZ triangles to other
Lie algebras is presently not known, (recently, however, extension to Lie superalgebras has
been started; see the work [16] on affine osp(1/2) fusion), our belief is mainly based on
our alternative approach to the computation of fusion multiplicities. It relies on the depth
rule and the relation to three-point functions in Wess–Zumino–Witten conformal field theory
[17, 18]. In that work BZ triangles only appear as guidelines, while the basic building blocks
are certain polynomials. It is an intriguing observation that the assignment of threshold levels
to those polynomials is straightforward, whereas the derivation of (35) was quite cumbersome.
One could therefore speculate that further progress, even for higher rank su(r + 1), is more
likely to be made using the three-point function approach.

Along another line of generalization, we are currently studying higher-point and higher-
genus su(3) and su(4) fusions. Thus, those efforts are combining the work presented here
with our recent results on higher-point and higher-genus su(2) fusion [5], and our general
description of higher-point su(r + 1) tensor product multiplicities [4].

Finally, when implemented in computer programs, we anticipate that our multiple sum
formulae offer a computational advantage over more conventional methods such as Weyl
group, and Young tableaux methods, for example.
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